叉乘

几何图示:

设有

a

=

(

a

x

,

a

y

,

a

z

)

,

b

=

(

b

x

,

b

y

,

b

z

)

\mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)

a=(ax​,ay​,az​),b=(bx​,by​,bz​)

i,j,k分别是X,Y,Z轴方向的单位向量,则:

a

×

b

=

(

a

y

b

z

a

z

b

y

)

i

+

(

a

z

b

x

a

x

b

z

)

j

+

(

a

x

b

y

a

y

b

x

)

k

\mathbf{a} \times \mathbf{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \mathbf{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \mathbf{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \mathbf{k}

a×b=(ay​bz​−az​by​)i+(az​bx​−ax​bz​)j+(ax​by​−ay​bx​)k

为了帮助记忆,利用三阶行列式,写成

i

j

k

a

x

a

y

a

z

b

x

b

y

b

z

\left|\begin{array}{lll} i & j & k \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{array}\right|

∣∣∣∣∣∣​iax​bx​​jay​by​​kaz​bz​​∣∣∣∣∣∣​

设a=(l,m,n),b=(o,p,q),则

a

×

b

=

(

l

,

m

,

n

)

×

(

o

,

p

,

q

)

=

(

m

q

n

p

,

n

o

l

q

,

l

p

m

o

)

\mathbf{a} \times \mathbf{b}=(l, m, n) \times(o, p, q)=(m q-n p, n o-l q, l p-m o)

a×b=(l,m,n)×(o,p,q)=(mq−np,no−lq,lp−mo)

利用三阶行列式,写成

i

j

k

l

m

n

o

p

q

\left|\begin{array}{ccc} i & j & k \\ l & m & n \\ o & p & q \end{array}\right|

∣∣∣∣∣∣​ilo​jmp​knq​∣∣∣∣∣∣​

推导

设有三个单位向量i,j,k,则:

i

=

(

1

,

0

,

0

)

j

=

(

0

,

1

,

0

)

k

=

(

0

,

0

,

1

)

\begin{aligned} &\overrightarrow{\mathrm{i}}=(1,0,0) \\ &\overrightarrow{\mathrm{j}}=(0,1,0) \\ &\overrightarrow{\mathrm{k}}=(0,0,1) \end{aligned}

​i

=(1,0,0)j

​=(0,1,0)k

=(0,0,1)​

i

=

j

×

k

j

=

k

×

i

k

=

i

×

j

k

×

j

=

i

i

×

k

=

j

j

×

i

=

k

i

×

i

=

j

×

j

=

k

×

k

=

0

=

0

\overrightarrow{\mathrm{i}}=\overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{k}}\\ \overrightarrow{\mathrm{j}}=\overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{i}}\\ \overrightarrow{\mathrm{k}}=\overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{j}}\\ \overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{j}}=- \overrightarrow{\mathrm{i}}\\ \overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{k}}=- \overrightarrow{\mathrm{j}}\\ \overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{i}}=- \overrightarrow{\mathrm{k}}\\ \overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{i}} = \overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{j}} = \overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{k}} = \overrightarrow{\mathrm{0}} = 0

i

=j

​×k

j

​=k

×i

k

=i

×j

​k

×j

​=−i

i

×k

=−j

​j

​×i

=−k

i

×i

=j

​×j

​=k

×k

=0

=0

i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系。 对于处于i,j,k构成的坐标系中的向量u,v我们可以如下表示:

u

=

(

x

u

,

y

u

,

z

u

)

v

=

(

x

v

,

y

v

,

z

v

)

\begin{aligned} &\overrightarrow{\mathrm{u}}=\left(\mathrm{x}_{\mathrm{u}}, \mathrm{y}_{\mathrm{u}}, \mathrm{z}_{\mathrm{u}}\right) \\ &\overrightarrow{\mathrm{v}}=\left(\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}}, \mathrm{z}_{\mathrm{v}}\right) \end{aligned}

​u

=(xu​,yu​,zu​)v

=(xv​,yv​,zv​)​

u

=

X

u

i

+

y

u

j

+

z

u

k

v

=

X

v

i

+

y

v

j

+

z

v

k

\begin{aligned} &\overrightarrow{\mathrm{u}}=\mathrm{X}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{k}} \\ &\overrightarrow{\mathrm{v}}=\mathrm{X}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{k}} \end{aligned}

​u

=Xu​⋅i

+yu​⋅j

​+zu​⋅k

v

=Xv​⋅i

+yv​⋅j

​+zv​⋅k

u

×

v

=

(

x

u

i

+

y

u

j

+

z

u

k

)

×

(

x

v

i

+

y

v

j

+

z

v

k

)

\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\left(\mathrm{x}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{k}}\right) \times\left(\mathrm{x}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{v}} \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{k}}\right)

u

×v

=(xu​⋅i

+yu​⋅j

​+zu​⋅k

)×(xv​⋅i

+yv​j

​+zv​⋅k

)

展开,得:

u

×

v

=

x

u

x

v

(

i

i

)

+

x

u

y

v

(

i

j

)

+

x

u

z

v

(

i

k

)

+

y

u

x

v

(

j

i

)

+

y

u

y

v

(

j

j

)

+

y

u

z

v

(

j

k

)

+

z

u

x

v

(

k

i

)

+

z

u

y

v

(

k

j

)

+

z

u

z

v

(

k

k

)

\begin{aligned} \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=& \mathrm{x}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{x}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{x}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{k}}) \\ &+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{k}}) \\ &+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{k}}) \end{aligned}

u

×v

=​xu​⋅xv​⋅(i

⋅i

)+xu​⋅yv​⋅(i

⋅j

​)+xu​⋅zv​⋅(i

⋅k

)+yu​⋅xv​⋅(j

​⋅i

)+yu​⋅yv​⋅(j

​⋅j

​)+yu​⋅zv​⋅(j

​⋅k

)+zu​⋅xv​⋅(k

⋅i

)+zu​⋅yv​⋅(k

⋅j

​)+zu​⋅zv​⋅(k

⋅k

)​

化简,得:

u

×

v

=

0

+

x

u

y

v

(

k

)

+

x

u

z

v

(

j

)

+

y

u

x

v

(

k

)

+

0

+

y

u

z

v

(

i

)

+

z

u

x

V

(

j

)

+

z

u

y

v

(

i

)

+

0

\begin{gathered} \vec{u} \times \vec{v}=\overrightarrow{0}+x_{u} \cdot y_{v} \cdot(\vec{k})+x_{u} \cdot z_{v} \cdot(-\vec{j}) \\ +y_{u} \cdot x_{v} \cdot(-\vec{k})+\overrightarrow{0}+y_{u} \cdot z_{v} \cdot(\vec{i}) \\ +z_{u} \cdot x_{V} \cdot(\vec{j})+z_{u} \cdot y_{v} \cdot(-\vec{i})+\overrightarrow{0} \end{gathered}

u

×v

=0

+xu​⋅yv​⋅(k

)+xu​⋅zv​⋅(−j

​)+yu​⋅xv​⋅(−k

)+0

+yu​⋅zv​⋅(i

)+zu​⋅xV​⋅(j

​)+zu​⋅yv​⋅(−i

)+0

合并,得:

u

×

v

=

(

y

u

z

v

z

u

y

v

)

(

i

)

+

(

z

u

x

v

x

u

z

v

)

(

j

)

+

(

x

u

y

v

y

u

x

v

)

(

k

)

\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\left(\mathrm{y}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}}-\mathrm{z}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{i}})+\left(\mathrm{z}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}}-\mathrm{x}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{j}})+\left(\mathrm{x}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}}-\mathrm{y}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{k}})

u

×v

=(yu​⋅zv​−zu​⋅yv​)⋅(i

)+(zu​⋅xv​−xu​⋅zv​)⋅(j

​)+(xu​⋅yv​−yu​⋅xv​)⋅(k

)

叉乘的几何意义

c

=

a

×

b

\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}

c

=a

×b

则c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。 且c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。

c

=

a

b

sin

θ

|c|=|a||b|·\sin \theta

∣c∣=∣a∣∣b∣⋅sinθ

右手定则: 若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。

代数规则

反交换律

a

×

b

=

b

×

a

\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}

a

×b

=−b

×a

加法的分配律

a

×

(

b

+

c

)

=

a

×

b

+

a

×

c

\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}

a

×(b

+c

)=a

×b

+a

×c

与标量乘法兼容

r

a

×

b

=

a

×

r

b

=

r

×

(

a

×

b

)

r\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}} \times r\overrightarrow{\mathrm{b}}=r \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})

ra

×b

=a

×rb

=r×(a

×b

)

不满足结合律,但满足雅可比恒等式

a

×

(

b

×

c

)

+

b

×

(

c

×

a

)

+

c

×

(

a

×

b

)

=

0

\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{b}} \times(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})+\overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) = 0

a

×(b

×c

)+b

×(c

×a

)+c

×(a

×b

)=0

分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

两个非零向量a和b平行,当且仅当a×b=0。

拉格朗日公式

设向量坐标

a

=

(

x

1

,

y

1

,

z

1

)

,

b

=

(

x

2

,

y

2

,

z

2

)

,

c

=

(

x

3

,

y

3

,

z

3

)

\vec{a}=(x 1, y 1, z 1), \vec{b}=(x 2, y 2, z 2), \vec{c}=(x 3, y 3, z 3)

a

=(x1,y1,z1),b

=(x2,y2,z2),c

=(x3,y3,z3), 则

(

a

×

b

)

×

c

=

(

y

1

z

2

z

1

y

2

,

z

1

x

2

x

1

z

2

,

x

1

y

2

x

2

y

1

)

×

(

x

3

,

y

3

,

z

3

)

=

(

z

1

z

3

x

2

x

1

z

2

z

3

x

1

y

2

y

3

+

x

2

y

1

y

3

,

x

1

x

3

y

2

x

2

x

3

y

1

y

1

z

2

z

3

+

z

1

z

3

y

2

,

y

1

y

3

z

2

y

2

y

3

z

1

x

2

x

3

z

1

+

x

1

x

3

z

2

)

=

(

x

2

(

x

1

x

3

+

y

1

y

3

+

z

1

z

3

)

,

y

2

(

x

1

x

3

+

y

1

y

3

+

z

1

z

3

)

,

z

2

(

x

1

x

3

+

y

1

y

3

+

z

1

z

3

)

)

(

x

1

(

x

2

x

3

+

y

2

y

3

+

z

2

z

3

)

,

y

1

(

x

2

x

3

+

y

2

y

3

+

z

2

z

3

)

,

z

1

(

x

2

x

3

+

y

2

y

3

+

z

2

z

3

)

)

=

(

x

2

(

a

c

)

,

y

2

(

a

c

)

,

z

2

(

a

c

)

)

(

x

1

(

b

c

)

,

y

1

(

b

c

)

,

z

1

(

b

c

)

)

=

b

(

a

c

)

a

(

b

c

)

\begin{aligned} &(\vec{a} \times \vec{b}) \times \vec{c}=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-x_{2} y_{1}\right) \times\left(x_{3}, y_{3}, z_{3}\right) \\ &=\left(z_{1} z_{3} x_{2}-x_{1} z_{2} z_{3}-x_{1} y_{2} y_{3}+x_{2} y_{1} y_{3}, x_{1} x_{3} y_{2}-x_{2} x_{3} y_{1}\right. \\ &\left.-y_{1} z_{2} z_{3}+z_{1} z_{3} y_{2}, y_{1} y_{3} z_{2}-y_{2} y_{3} z_{1}-x_{2} x_{3} z_{1}+x_{1} x_{3} z_{2}\right) \\ &=\left(x_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right), y_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right), z_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right)\right) \\ &-\left(x_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right), y_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right), z_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right)\right) \\ &=\left(x_{2}(\vec{a} \cdot \vec{c}), y_{2}(\vec{a} \cdot \vec{c}), z_{2}(\vec{a} \cdot \vec{c})\right)-\left(x_{1}(\vec{b} \cdot \vec{c}), y_{1}(\vec{b} \cdot \vec{c}), z_{1}(\vec{b} \cdot \vec{c})\right) \\ &=\vec{b}(\vec{a} \cdot \vec{c})-\vec{a}(\vec{b} \cdot \vec{c}) \end{aligned}

​(a

×b

)×c

=(y1​z2​−z1​y2​,z1​x2​−x1​z2​,x1​y2​−x2​y1​)×(x3​,y3​,z3​)=(z1​z3​x2​−x1​z2​z3​−x1​y2​y3​+x2​y1​y3​,x1​x3​y2​−x2​x3​y1​−y1​z2​z3​+z1​z3​y2​,y1​y3​z2​−y2​y3​z1​−x2​x3​z1​+x1​x3​z2​)=(x2​(x1​x3​+y1​y3​+z1​z3​),y2​(x1​x3​+y1​y3​+z1​z3​),z2​(x1​x3​+y1​y3​+z1​z3​))−(x1​(x2​x3​+y2​y3​+z2​z3​),y1​(x2​x3​+y2​y3​+z2​z3​),z1​(x2​x3​+y2​y3​+z2​z3​))=(x2​(a

⋅c

),y2​(a

⋅c

),z2​(a

⋅c

))−(x1​(b

⋅c

),y1​(b

⋅c

),z1​(b

⋅c

))=b

(a

⋅c

)−a

(b

⋅c

)​ 这就是二重向量叉乘化简公式

(

a

×

b

)

×

c

=

b

(

a

c

)

a

(

b

c

)

(\vec{a} \times \vec{b}) \times \vec{c}=\vec{b}(\vec{a} \cdot \vec{c})-\vec{a}(\vec{b} \cdot \vec{c})

(a

×b

)×c

=b

(a

⋅c

)−a

(b

⋅c

)

转化一下,得

a

×

(

b

×

c

)

=

b

(

a

c

)

c

(

a

b

)

\vec{a} \times (\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})

a

×(b

×c

)=b

(a

⋅c

)−c

(a

⋅b

)

向量积(矢积)与数量积(标积)的区别